Test of Homogeneity of Covariance Matrices given by Srivastava et al. 2014

Srivastava2014(x, ...)

Arguments

x

data as a data frame, list of matrices, grouped data frame, or resample object

...

other options passed to covTest method

Value

A list with class "htest" containing the following components:

statistic the value of homogeneity of covariance test statistic
parameter the degrees of freedom for the chi-squared statistic
p.value the p=value for the test
estimate the estimated covariances if less than 5 dimensions
null.value the specified hypothesized value of the covariance difference
alternative a character string describing the alternative hyposthesis
method a character string indicating what type of homogeneity of covariance test was performed

Details

The homogeneityCovariances function is a wrapper function that formats the data for the specific covTest functions.

References

Srivastava, M., Yanagihara, H., and Kubokawa T. (2014). Tests for covariance matrices in high dimension with less sample size. Journal of Multivariate Analysis, 130:289-309. 10.1016/j.jmva.2014.06.003

Examples

irisSpecies <- unique(iris$Species) iris_ls <- lapply(irisSpecies, function(x){as.matrix(iris[iris$Species == x, 1:4])} ) names(iris_ls) <- irisSpecies Srivastava2014(iris_ls)
#> #> Srivastava et al. 2014 Homogeneity of Covariance Matrices Test #> #> data: setosa, versicolor and virginica #> Chi-Squared = 1007.8, df = 1, p-value < 2.2e-16 #> alternative hypothesis: true difference in covariance matrices is not equal to 0 #>